一、多项式回归的含义 多项式回归是线性回归的扩展,通过引入自变量的高次项(如 x2,x3x2,x3)来拟合非线性关系。它保留了线性回归的建模形式,但能更灵活地描述曲线趋势。 通俗理解 想象用一根直线(线性回归)拟合弯曲的数据点会显得“僵硬”,而多项式回归就像换成可弯曲的尺子——通过调整“弯曲程度”(
一、特征缩放的含义 特征缩放(Feature Scaling)是数据预处理的关键步骤,它通过调整不同特征的数值范围,使其处于相近的尺度,从而提高机器学习模型的性能和训练效率。 通俗理解 想象你要比较一群人的身高(单位:厘米)和体重(单位:公斤),如果直接用原始数据,身高的数值(如170、180)可能
一、向量化的含义 向量化(Vectorization) 是一种利用数组或矩阵运算替代逐元素循环操作的技术,常用于科学计算和数据处理中,以提高代码执行效率。 通俗理解:就像用“批量处理”代替“一个一个做”——比如算100个数字的加法时,直接用一条指令完成,而不是循环100次。
一、多元线性回归的含义 多元线性回归是一种统计方法,用于分析多个自变量(X)与一个因变量(Y)之间的线性关系。 通俗理
一、学习率的含义 学习率(Learning Rate)是机器学习中控制模型参数更新步长的超参数。它决定了每次迭代中,模型根据损失函数的梯度调整参数的幅度。 通俗理解: 想象你正在下山(寻找最低点),学习率就像你每一步迈的“步子大小”。步子太大(学习率过高)可能会跨过最低点甚至越走越偏;步子太小(学习
一、梯度下降的含义 梯度下降是一种优化算法,用于通过计算目标函数的梯度(导数)来逐步调整参数,从而最小化损失函数(或最大化收益函数)。 通俗理解: 就像一个人下山,每一步都沿着最陡的方向往
一、代价函数的含义 代价函数(Cost Function),也称为损失函数(Loss Function)或目标函数(Objective Function),是机器学习中衡量模型预测结果与真实值之间差异的数学函数。它如同指南针一般,为模型优化指明方向,是训练任何机器学习模型的核心组成部分。 在机器学习
一、线性回归的含义 线性回归(Linear Regression)是统计学和机器学习中最基础、最常用的预测模型之一,用于分析因变量(目标变量)与一个或多个自变量(特征变量)之间的线性关系。其核心思想是通过拟合一条最佳直线(或超平面)来描述变量之间的关系,并据此进行预测。 通俗理解: 想象你在卖冰淇淋
一、非监督学习的含义 非监督学习是机器学习的另一种类型,它使用没有标签的原始数据来训练模型,目标是从数据中自动发现结构、模式或关系。因为没有“答案”可参考,算法就像是在自己摸索和学习。 通俗理解: 这就像你在看一堆没有标准答案的题目(比如几十篇文章或图片),你开始自己归类,比如“这些是讲科技的,那些
一、监督学习的含义 监督学习是机器学习的一种类型,它通过已有的标注数据来训练模型,使其能够对未知数据进行预测或分类。所谓“监督”,就是在训练过程中,算法知道每条数据的“答案”(即标签),这就像老师在教学生题目并给出正确答案。 通俗理解: 就像你在做选择题,题干是“输入”,标准答案是“标签”;你做多了